

编 肖德好

字练之

高中物理

必修第二册 RJ

细分课时

分层设计

夯实基础

突出重点

天津出版传媒集团 天津人员出版社

Contents

05	那 : PAR	九草 - 抛体运动 T FIVE		
	1	曲线运动	导 109	
	2	运动的合成与分解	导 11′	
		第 1 课时 运动的合成与分解一般规律	导 11′	
		第 2 课时 运动的合成与分解常见模型	导 113	
	3	实验:探究平抛运动的特点	导 116	
	4	抛体运动的规律	导 119	
		第 1 课时 平抛运动的性质和规律	导 119	
		第2课时 平抛运动的两个重要推论 一般的抛体运动	导 12′	
	专题课:平抛运动与各种面结合问题			
	专	题课:平抛运动中的临界极值问题 类平抛运动	导 125	
06		六章 圆周运动		
	PAR	T SIX	导 127	
	2	向心力		
	2		导 130	
		第 1 课时 向心力 实验:探究向心力的大小与半径、角速度、质量的关系	导 130	
		第2课时 匀速圆周运动向心力的大小 变速圆周运动和一般曲线运动	导 132	
	3	向心加速度	导 134	
	4	生活中的圆周运动	导 135	
	专	题课: 竖直面内的圆周运动问题	导 139	
	专	题课:水平面内的圆周运动问题	导 14′	

07		と章 万有引力与宇宙航行 - SEVEN	
	1	行星的运动	导 144
	2	万有引力定律	导 146
	3	万有引力理论的成就	导 150
	4	宇宙航行	导 152
	习	题课:天体运动	导 156
	5	相对论时空观与牛顿力学的局限性	导 159
80		【章 机械能守恒定律 :EIGHT	
	1	功与功率	导 162
		第 1 课时 功	导 162
		第2课时 功率	导 164
	专	题课:机车启动问题和变力做功问题	导 166
	2	重力势能	导 169
	3	动能和动能定理	导 172
	习	题课: 动能定理的应用	导 175
	4	机械能守恒定律	导 178
	专	题课:系统机械能守恒的应用	导 180
	专	题课:功能关系及其应用	导 183
	5	实验:验证机械能守恒定律	导 186

导 189

◆ 参考答案

第五章 抛体运动

1 曲线运动

学习任务一 曲线运动	的的速度方向及其性质
[教材链接]阅读教材,完成下列填空: (1)物体的运动轨迹为	A. 做曲线运动的物体速度方向一定发生变化 B. 速度方向发生变化的运动一定是曲线运动 C. 速度变化的运动一定是曲线运动 D. 加速度变化的运动一定是曲线运动 倒 2 如图所示是跳水运动员高台跳水时头部的运动轨迹,最后运动员沿竖直方向以速度 v 入水,则图中 a、b、c、d 四个位置中,头部运动方向与速度 v 的方向相同的是 () c
甲 乙 刀具与砂轮接触处的火星、伞面上的水滴分别沿什 么方向飞出?	【要点总结】 1. 曲线运动的性质:速度是矢量,因为曲线运动的速度方向时刻在发生变化,所以曲线运动一定是变速运动.
倒1 [2023·江苏扬州中学月考]下列关于曲线运动的说法正确的是 ()	2. 曲线运动是变速运动,就一定有加速度,当加速度恒定时为匀变速曲线运动,当加速度变化时为非匀变速曲线运动。
学习任务二 对曲	线运动条件的理解
[科学探究] 如图所示,将圆弧形滑轨放在铺了一层白纸的水平桌面上,使其底端与桌面相切,让小铁球从圆弧形滑轨滚下以获得一定的初速度.为便于观察,在离开滑轨处沿小铁球运动方向用刻度尺在白	倒 3 关于物体做曲线运动的条件,以下说法正确的是 A. 物体受到的合力不为零,物体一定做曲线运动 B. 物体受到的合力不为恒力,物体一定做曲线运动

小铁球 条形磁铁 甲 乙 (1)图甲中,受到磁铁的吸引力方向与小球的速度方向 (选填"在"或"不在")同一条直线上;图 乙中,受到磁铁的吸引力方向与小球的速度方向 (选填"在"或"不在")同一条直线上. (2)小球做曲线运动时,受到的吸引力方向指向轨迹

纸上画一直线.

弯曲的 .

C. 初速度不为零,加速度也不为零,物体一定做曲

D. 初速度不为零,且受到与初速度方向不在同一条直

线上的合力作用,物体一定做曲线运动

线运动

「反思感悟」

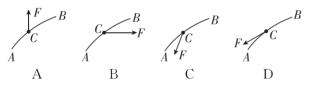
要式 1 (多选)质点在 F_1 、 F_2 、 F_3 三个恒力的共同作用下处于平衡状态,若突然撤去 F_1 ,则质点 ()

- A. 一定做匀变速运动
- B. 可能做曲线运动
- C. 一定做非匀变速运动
- D. 一定做加速运动

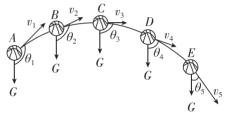
【要点总结】

- 1. 物体做曲线运动的条件
- (1)动力学条件:合力方向与速度方向不共线,这包含 三个层次的内容:①初速度不为零;②合力不为零;

- ③合力方向与速度方向不共线.
- (2)运动学条件:加速度方向与速度方向不共线.
- 2. 简单运动的分类


	F(a)与 v 的方向	轨迹特点	加速度特点	运动性质
	共线	直线	恒定	匀变速直线运动
	六久	且级	不恒定	非匀变速直线运动
	不共线	曲线	恒定	匀变速曲线运动
	小共线		不恒定	非匀变速曲线运动

|素养提升|


曲线运动特征

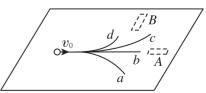
- (1)运动学特征:曲线运动一定为变速运动.
- (2)动力学特征:物体所受的合力一定不为零且和速度方向始终不在一条直线上(曲线运动条件). 合力方向与速度方向成锐角时,物体做加速曲线运动;成钝角时,物体做减速曲线运动.
- (3)轨迹特征:曲线运动的轨迹始终夹在合力方向与速度方向之间,而且向合力的一侧弯曲,或者说合力的方向总指向曲线的凹侧,轨迹只能平滑变化,不会出现折线.

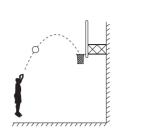
示例 $[2023 \cdot 山东青岛二中月考]$ 质点沿如图所示的轨迹从 A 点运动到 B 点,已知其速度逐渐减小,则图中能正确表示质点在 C 点受力的是

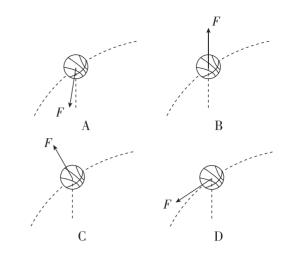
变式2(多选)观察图中抛出去的篮球(忽略空气阻力), C 为轨迹最高点,则下列说法中正确的是

- A. 篮球在 E 点的速度比在 D 点的速度大
- B. 篮球在 A 点的加速度方向与速度的夹角小于 90°
- C. 篮球在 A 点的加速度与在 E 点的加速度相同
- D. 篮球从 A 到 E 过程中,速度先减小后增大 $\lceil 反 \mathbb{D}$ 展悟 \rceil

▮随堂巩固 ▮


1. (对曲线运动速度方向的理解)[2023·石家庄 一中月考] 如图所示,一辆汽车沿着弯曲的水平公路行驶,依次通过公路上的 a、b、c、d、e 各位置,其中汽车速度方向与它在 e 位置的速度方向大致相同的是


A. 位置 a B. 位置 b C. 位置 c D. 位置 d


2. (曲线运动的条件)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,

让小钢珠在水平桌面上从同一位置以相同初速度 v_0 运动,得到不同轨迹. 如图所示,a、b、c、d 为其中四条运动轨迹,磁铁放在位置 A 时,小钢珠的运动轨迹是_____(填轨迹字母代号),磁铁放在位置 B 时,小钢珠的运动轨迹是_____(填轨迹字母代号).实验表明,当物体所受合力的方向跟它的速度方向_____(选填"在"或"不在")同一直线上时,物体做曲线运动.

3. (曲线运动的轨迹分析)[2023·辽宁卷]某同学在练习投篮,篮球在空中的运动轨迹如图中虚线所示,篮球所受合力 *F* 的示意图可能正确的是

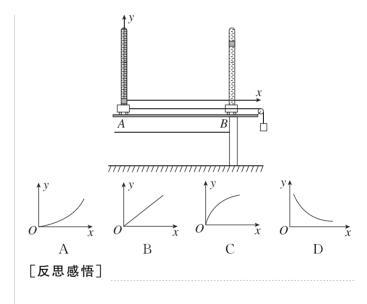
2 运动的合成与分解

第1课时 运动的合成与分解一般规律

学习任务一 运动描述的实例——探究合运动与分运动

[教材链接]	阅读教材。	,完成	下列填空:
--------	-------	-----	-------

(1)建立直角坐标系


(2) 蜡块沿玻璃管匀速上升的速 $O^{\square N}$ 度设为 v_x , 玻璃管向右匀速移动的速度设为 v_x . 从 蜡块开始运动的时刻计时, 在 t 时刻, 蜡块的位置 P 可以用它的 x 、y 两个坐标表示: x = , y =

(3)	蜡块	的	运动	勃	亦
(0)	ガロ グ 人	μJ		17/1	122

由以上两式可得: $y = _____$. 因为 $v_y \setminus v_x$ 都是常量,所以蜡块的运动轨迹是一条

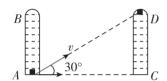
- (4)蜡块运动的速度
- ①蜡块运动的速度大小v= .
- ②蜡块运动的速度方向与x 轴正方向夹角为 θ ,则 tan θ = .

倒 1 [2023·上海延安中学期中] 如图,在一端封闭的玻璃管中注满清水,水中放一个圆柱形蜡块,将玻璃管的开口端用胶塞塞紧,并迅速竖直倒置,红蜡块就沿玻璃管由管口匀速上升到管底.将此玻璃管倒置安装在小车上,并将小车置于水平光滑导轨上,小车一端连接细线绕过定滑轮悬挂小物体.经过一段时间后,小车运动到 *B* 位置.按照图建立坐标系,这一过程中蜡块实际运动的轨迹可能是

【要点总结】

- 1. 在教材实验中,蜡块同时参与了两个运动——在竖直方向上蜡块沿玻璃管向上运动,在水平方向上蜡块随着玻璃管向右运动,这两个运动都叫作分运动,而蜡块的实际运动,即相对于黑板向右上方的运动,被称为合运动.
- 2. 对合运动与分运动关系的理解

同一性	分运动与合运动对应同一物体				
ᄽᆎᅷᄱ	一个物体同时参与两个(或多个)分运动,分				
独立性 	运动之间互不影响				
等时性	分运动总是同时开始,同时结束				
左 ☆ ☆ ₩	各分运动叠加起来与合运动有相同的效果,				
等效性	可以相互替代				


学习任务二 运动的合成与分解

「教材链接〕阅读教材,完成下列填空:

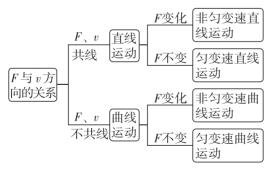
(1)由分运动求合运动的过程叫______,由合运动求分运动的过程叫______.运动的合成与分解包括______的合成与分解和_______的合成与分解.

(2)运动的合成与分解应遵从

倒 2 [2023·浙江杭州二中月考] 竖直放置的两端 封闭的玻璃管中注满清水,内有一个蜡块能在水中以 0.1 m/s 的速度匀速上浮. 在蜡块从玻璃管的底端匀 速上浮的同时,使玻璃管沿水平方向匀速向右运动, 测得蜡块实际运动方向与水平方向成 30°角,如图所 示. 若玻璃管的长度为 1.0 m,则在蜡块从玻璃管底端 上升到顶端的过程中,玻璃管沿水平方向移动的速度 大小和水平运动的距离分别为

- A. 0.1 m/s 和 1.73 m
- B. 0.173 m/s 和 1.0 m
- C. 0.173 m/s和1.73 m
- D. 0.1 m/s 和 1.0 m

「反思感悟〕

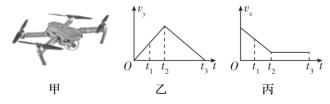

变式 1 [2023 · 上海中学月考] 如图所示,一重物 在塔吊机的作用下运动,某时刻重物相对地面的速度大小为 3 m/s,水平速度大小为 2 m/s,则此刻重物竖直方向上的速度大小为 ()

- A. 1 m/s
- B. $\sqrt{5}$ m/s
- C. 5 m/s
- D. $\sqrt{13}$ m/s

[反思感悟]

学习任务三 合运动性质的判断

[科学思维] 分析两个互成角度的直线运动的合运动的性质时,应先求出合运动的合速度 v 和合力 F (合加速度 a),然后进行判断.



倒3(多选)[2023·山东聊城期中]关于两个运动的合运动,下列说法中正确的是 ()

- A. 两个直线运动的合运动一定是直线运动
- B. 两个不在同一直线上的匀速直线运动的合运动 一定是匀速直线运动
- C. 两个互成角度的匀变速直线运动的合运动一定 是匀变速直线运动
- D. 两个分运动的时间和它们合运动的时间相等

[反思感悟]

要式 2 如图甲所示的某台无人机上升、向前追踪拍摄的飞行过程中竖直方向上的速度 v_x 及水平方向上的速度 v_x 与飞行时间 t 的关系图像如图乙和丙所示.下列说法正确的是

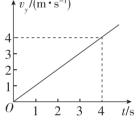
- A. 无人机在 t_1 时刻处于失重状态
- B. 无人机在 $0\sim t_2$ 这段时间内沿直线飞行
- C. 无人机在 t₂ 时刻上升至最高点
- D. 无人机在 $t_2 \sim t_3$ 时间内做匀变速运动

反思感悟]		

【要点总结】

几种常见的运动合成情况

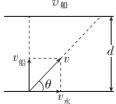
两个互成角度 (0<θ<180°)的分运动	合运动的性质
两个匀速直线运动	匀速直线运动
一个匀速直线运动、一个 匀变速直线运动	匀变速曲线运动


两个互成角度	合运动的性质
(0<θ<180°)的分运动	口色切的住灰
两个初速度为零的匀加速	匀加速 直线运动
直线运动	勺 加述且线运动
	若 v _φ 与 a _φ 共线,则为
两个初速度不为零的匀变	匀变速直线运动
速直线运动	若 υφ 与 αφ 不共线,则
	为匀变速曲线运动

| 随堂巩固 |

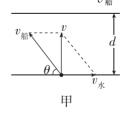
- 1. (对运动的合成与分解的理解)[2023·陕西咸阳期中] 跳伞表演是人们普遍喜欢的观赏性体育项目,当跳伞运动员从直升机上由静止跳下后,在下落过程中若受到水平风力的影响,下列说法正确的是
- A. 风力越大,运动员下落时间越长,运动员可完成 更多的空中表演动作
- B. 风力越大,运动员下落时间越短,有可能对运动 员造成伤害
- C. 运动员下落时间与风力大小无关
- D. 运动员着地速度与风力大小无关
- 2. (运动的合成)[2023·广东广雅中学月考]如图所示,飞机与货物以4 m/s的速度水平匀速飞行,同时以3 m/s的速度匀速收拢绳索将货物接到飞机里,绳索始终竖直,该过程中 ()

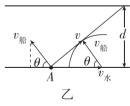
- A. 绳索的拉力大于货物的重力
- B. 货物相对地面做曲线运动
- C. 货物的速度大小为 7 m/s
- D. 货物的速度大小为 5 m/s
- 3. (两个直线运动的合成) [2023 · 南京师大附中月考] 某质量 m=0.1 kg 的质点在 x 轴正方向做速度 $v_0=4$ m/s 的匀速直线运动,在 y 轴方向的速度—时间关系如图所示,则下列说法正确的是
- A. 该质点做匀变速直线运动
- B. 该质点在 $0\sim4$ s 内的位移 大小为 $8\sqrt{5}$ m
- C. 该质点在 4 s 末的速度大 2 小为 4 m/s
- D. 该质点所受合外力恒为 0° 0.2 N



第2课时 运动的合成与分解常见模型

学习任务一 小船渡河问题


[模型建构]


- (1)渡河时间问题
- ①渡河时间 t 取决于河宽 d 及船沿垂直河岸方向上的速度大小,即 $t = \frac{d}{v_{\perp}}$.
- ②若要渡河时间最短,只要使船头垂直于河岸航行即可,如图所示,此时 $t = \frac{d}{dt}$.

请记住:要渡河时间最短,船头应垂直指向河对岸,即 亚 与水流方向垂直,渡河时间与 亚 无关.

- (2)最短位移问题
- ①若 $v_{\kappa} < v_{\text{M}}$,最短的位移为河宽 d,船头与上游河 岸夹角满足 $\cos \theta = \frac{v_{\kappa}}{v_{\text{M}}}$,如图甲所示.

②若 $v_{*} > v_{\text{fl}}$,如图乙所示,从出发点 A 开始作矢量 v_{*} ,再以 v_{*} 末端为圆心,以 v_{fl} 的大小为半径画圆弧,自出发点 A 向圆弧作切线即为船位移最小时的合运动的方向. 这时船头与河岸夹角 θ 满足

$$\cos \theta = \frac{v_{\text{fl}}}{v_{\text{th}}}$$
,最短位移 $x_{\text{fl}} = \frac{d}{\cos \theta}$.

- **倒 1** 已知某船在静水中的速度为 $v_1 = 4$ m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为 d = 100 m,水流速度为 $v_2 = 3$ m/s 且方向与河岸平行.
- (1)欲使船以最短时间渡河,船头应朝什么方向?最短时间是多少?船发生的位移是多大?
- (2)欲使船以最小位移渡河,船头应朝什么方向?渡河所用时间是多少?
- **要式 1** [2023·江苏淮安一中月考] 某游泳爱好者 横渡富春江,他以恒定的速度向对岸游去,面部始终 保持与河岸垂直.设江中各处水流速度相等,他游过 的路程,过河所用的时间与水速的关系是
- A. 水速变大后,路程变长,时间不变
- B. 水速变大后,路程变长,时间变长
- C. 水速变大后,合速度变大,时间变短
- D. 路程、时间与水速无关

要式 2 [2023 · 广州六中月考] 一小船在静水中的速度大小为 3 m/s,它在一条河宽为 150 m、流速为 5 m/s 的河流中渡河,则下列说法正确的是 ()

- A. 小船渡河时间不少于 60 s
- B. 小船以最短时间渡河时,它沿水流方向的位移大 小为 150 m
- C. 小船以最短位移渡河时,位移大小为 250 m
- D. 小船以最短位移渡河时,时间为60 s

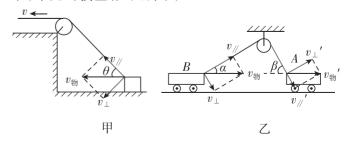
[反思感悟]

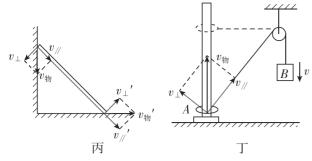
【要点总结】

- 1. 解决小船渡河问题的关键是:正确区分合运动与分运动.沿船头指向方向的运动,是分运动,船的实际运动是合运动,一般情况下与船头指向不共线.
- 2. 小船渡河时间最短与位移最短是两种不同的运动情境,时间最短时,位移不是最短.
- 3. 渡河最短时间与船随水漂流的速度大小无关,只要船头指向与河岸垂直,渡河时间即为最短.

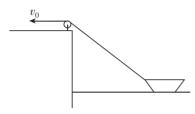
学习任务二 关联速度问题

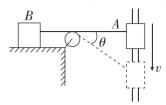
[模型建构]"关联速度"模型


(1)"关联"速度

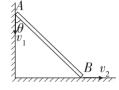

关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动.一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为"关联"速度.

- (2)"关联"速度分解的步骤
- ①确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向.
- ②确定合运动的两个效果.


相互接触的── | 效果 1:垂直接触面的运动物体的问题 | 效果 2:沿接触面的运动

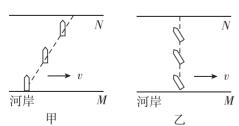

- ③画出合运动与分运动的平行四边形,确定它们的 大小关系.
- (3)常见的模型(如图所示)

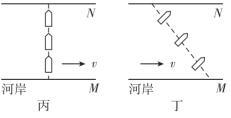
倒 2 如图所示,在以 v_0 的速度匀速拉船靠岸的过程中,拉绳的速度 v_0 与船的速度 v 有何关系? 船的速度如何变化?



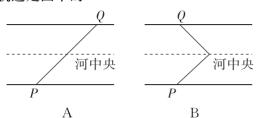
- Α. υ
- B. $\frac{v}{\sin \theta}$
- C. $v\cos\theta$
- D. $v\sin\theta$

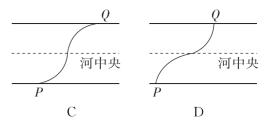
倒3 如图所示,一根长直轻杆 AB 在墙角沿竖直墙和水平地面滑动(假设 A 端不脱离墙面). 当 AB 杆和墙的夹角为 θ 时,杆的 A 端沿墙下滑的速度大小为 v_1 ,B 端沿地面滑动的速度大小为 v_2 ,则 v_1 , v_2 的关系是


- A. $v_1 = v_2$
- B. $v_1 = v_2 \cos \theta$
- C. $v_1 = v_2 \tan \theta$
- D. $v_1 = v_2 \sin \theta$


[反思感悟]

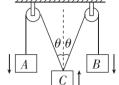
▮ 随堂巩固 ▮


1. (小船渡河问题)小明同学遥控小船做过河实验,并绘制了四幅小船过河的航线图如图所示. 图中实线为河岸,河水的流动速度不变,方向水平向右,虚线为小船从河岸 M 驶向对岸 N 的实际航线,小船相对于静水的速度不变. 下列说法正确的是



- A. 航线图甲是正确的,船头保持图中的方向,小船 过河时间最短
- B. 航线图乙是正确的,船头保持图中的方向,小船 过河时间最短
- C. 航线图丙是正确的,船头保持图中的方向,小船 过河位移最短
- D. 航线图丁是不正确的,如果船头保持图中的方向,那么船的轨迹应该是曲线

2. (小船过河轨迹分析)1934 年 10 月,红军为突破第五次反"围剿",从宁化湖村等地集结出发,途经于都,强渡于都河(贡江). 若渡河区域内的河岸平直,水流速度方向处处与河岸平行,越靠近河中央,水流速度越大. 设木船相对静水的速度大小恒定. 以最短的时间过河,则木船在出发点 P 与登陆点 Q 之间的运动轨迹是图中的

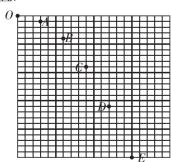


3. (关联速度问题)[2023·江苏苏州中学月考] 如图所示,A、B、C 三个物体用轻绳绕过定滑轮连接,物体 A、B 的速度方向向下,大小均为 v,则物体 C 的速度大小为

A. $2v\cos\theta$ B. $v\cos\theta$

C.
$$\frac{2v}{\cos\theta}$$

3 实验:探究平抛运动的特点

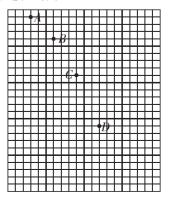

【实验思路】

- 1. 思路:把复杂的曲线运动分解为不同方向上的两个相对简单的直线运动.
- 2. 平抛运动的分解方法
- (1)平抛运动的特点:物体是沿着水平方向抛出的, 在运动过程中只受到竖直向下的重力作用.
- (2)分解方法:分解为水平方向的分运动和竖直方向的分运动.

方案一 利用频闪照相或者录制视频的方法探究平 抛运动

【实验步骤】

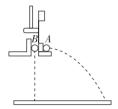
- **1**. 让小球从水平桌面上飞出,在小球后面放置带方格的黑板作为背景.
- **2**. 用频闪照相或者录制视频的方法,记录物体在不同时刻的位置.

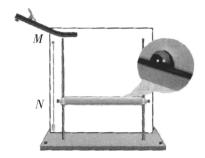


频闪照相法

- **3**. 以抛出点为坐标原点,以初速度方向为x轴正方向,竖直向下为y轴正方向,建立直角坐标系,记录小球的水平位移和竖直位移.
- **4.** 记录需要测量的数据,小球其他位置中心依次为 $A \setminus B \setminus C \setminus D \setminus E \setminus \cdots$,过 $A \setminus B \setminus C \setminus D \setminus E \setminus \cdots$ 点分别作 $x \setminus y$ 轴的垂线,在 $x \setminus y$ 轴上测量 $OA \setminus OB \setminus OC \setminus OD \setminus OE \setminus \cdots$ 之间的距离,记为 $x_{OA} \setminus y_{OA}$ 等,建立表格.

	OA	ОВ	ОС	OD	OE	
t	T	2 <i>T</i>	3 <i>T</i>	4 T	5 <i>T</i>	
x/mm						
y/mm						

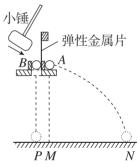

- 5. 判断水平方向和竖直方向分别做什么运动.
- (1)在误差允许的范围内,若 $x_{OA} = x_{AB} = x_{BC} = x_{CD} = x_{DE}$,则表明平抛运动的水平分运动为匀速直线运动.
- **倒 1** [2023 天津一中月考] 如图所示为一小球做平抛运动的频闪照片的一部分,闪光频率是 10 Hz,图中背景方格的边长均为 5 cm.


(1)定性分析:由于频闪时间间隔相等,根据			
,可判断水平方	向		
是;根据			
,可判断竖直方向是			
(2)定量计算:			
①小球运动中水平分速度的大小是m/s.			
②小球经过 B 点时的速度大小是m/s.			
[反思感悟]			

方案二 利用平抛竖落仪和斜槽探究平抛运动

- (一)探究平抛运动竖直分运动的特点
- 1. 把两个等大的金属小球放置在图中装置上.

- **2.** 用小锤击打弹性金属片,观察两球的运动轨迹, 比较它们落地时间的先后.
- **3**. 分别改变小球距离地面的高度和小锤击打的力度, 多次重复实验,比较它们落地时间的先后.
- **4.** 若两小球总是同时落地,则表明平抛运动的竖直 分运动是自由落体运动.
- (二)探究平抛运动水平分运动的特点

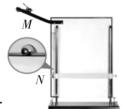


- 1. 将一张白纸和复写纸固定在装置的背板上.
- **2**. 按照图示安装实验装置,使斜槽 M 末端水平.
- 3. 把斜槽末端上钢球球心位置投影在白纸上 0 点.
- **4**. 使钢球从斜槽上同一位置由静止滚下,上下调节 装置中的倾斜挡板 *N*,使钢球落到上面,钢球挤压复 写纸,在白纸上留下印迹.
- **5**. 上下调节挡板 N, 重复步骤 4, 在白纸上记录钢球所经过的多个位置.
- **6**. 用平滑曲线把这些印迹连接起来,就得到钢球做平抛运动的轨迹.
- **7**. 以 O 点为坐标原点,水平方向为 x 轴,竖直方向为 y 轴,建立平面直角坐标系.

8. 在钢球平抛运动轨迹上选取分布均匀的六个点——A、B、C、D、E、F, 用刻度尺、三角板测出它们的坐标(x,y),并记录在下面的表格中,已知 g 值,利用公式 $y = \frac{1}{2}gt^2$ 和 $x = v_0t$,求出小球做平抛运动的初速度 v_0 ,最后算出 v_0 的平均值.

	A	В	C	D	E	F
x/mm						
y/mm						
$v_0 =$						
$x\sqrt{\frac{g}{2y}}/(m \cdot s^{-1})$						
v ₀ 的平均值/(m・s ⁻¹)						

倒 2 [2024•河南许昌期末] 某物理兴趣小组采用如图所示的装置进行实验. 质量分别为 m_A 和 m_B 的 A、B 小球处于同一高度, M 为 A 球中心初始时在水平地面上的垂直投影. 用小锤打击弹性金属片, 使 A 球沿水平方向飞出,同时 B 球被自动松开, B 球自由下落. 最后 B 球落到水平地面上的 P 点, A 球落到水平地面上的 N 点. 请你回答下列问题:

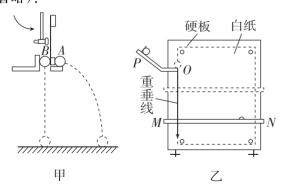


- (1)该实验是为了验证:____(填选项前的字母);
- A. 做平抛运动的小球 *A* 在竖直方向上做自由落体 运动
- B. 做平抛运动的小球 *A* 在水平方向上做匀速直线 运动
- C. 小球 B 在竖直方向上做自由落体运动
- (2)该实验中 (填选项前的字母).
- A. 两球的质量应该相等
- B. 应改变装置的高度,多次进行实验
- C. 需要测出装置距地面之间的竖直高度

[反思感悟]	

倒3 [2023·山东青岛二中月考] 在做"研究平抛运动"的实验时,如图所示,让小球多次沿同一轨道运动,通过描点法画小球做平抛运动的轨迹.为了能较准确地描绘运动轨迹:

(1)实验时将固定有斜槽的木板 放在实验桌上,实验前要检查木 板是否水平,请简述你的检查方 法:

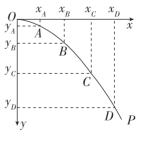

(2)每次释放小球的位置必须

(填"相同"或

"不同"),每次必须由____(填"运动"或"静止") 释放小球.

| 随堂巩固 |

- **1**. (实验器材选取)在"探究平抛运动的特点"实验中,为减小空气阻力对小球运动的影响,应采用()
- A. 实心小铁球
- B. 空心小铁球
- C. 实心小木球
- D. 以上三种小球都可以
- **2.** (实验条件)[2023·浙江嘉兴一中期中] 在"探究平抛运动的特点"的实验中,如果小球每次从斜槽滚下的初始位置不同,则下列说法错误的是
- A. 小球平抛的初速度不同
- B. 小球每次做不同的抛物线运动
- C. 小球在空中运动的时间每次均不同
- D. 小球通过相同的水平位移所用的时间均不同
- **3**. (实验综合)[2023·江西南昌期中]某同学进行了"探究平抛运动的特点"的实验,具体如下(部分步骤省略):


(1)如图甲所示,用小锤打击弹性金属片,A 球沿水平方向抛出,同时 B 球由静止自由下落,可观察到两小球同时落地;多次实验,结论不变.根据实验,

(3)将球的位置记录在纸上后,取下纸,将点连成(填"折线""直线"或"平滑曲线").

【注意事项】

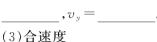
- **1**. 平板必须处于竖直平面内,固定时要用铅垂线检查坐标纸竖线是否竖直.
- 2. 钢球每次必须从斜槽上同一位置由静止滚下.
- **3**. 坐标原点不是槽口的端点,应是钢球在槽口时球 心在平板上的投影点.
- **4**. 钢球开始滚下的位置高度要适中,以使钢球做平抛运动的轨迹由坐标纸的左上角一直到达右下角为宜.
- **5**. 应在轨迹上选取离坐标原点 O 较远的一些点来计算初速度.
- (选填"能"或"不能")判断出 *A* 球在水平方向做匀速 直线运动。
- (2)如图乙所示,将白纸和复写纸对齐重叠并固定在竖直的硬板上. 钢球沿斜槽轨道 PO 滑下后从 O 点飞出,落在挡板 MN 上……白纸上将留下一系列痕迹点.
- ①为了保证钢球从 O 点飞出的水平初速度是一定的,下列实验条件必须满足的是 .
- A. 斜槽轨道光滑
- B. 斜槽轨道末端水平
- C. 每次从斜槽上相同的位置无初速度释放钢球
- ②该组同学通过实验,得到了钢球做平抛运动的轨迹,如图丙中的曲线 OP 所示. 在曲线 OP 上取 A、B、C、D 四点,这四个点对应的坐标分别为 (x_A, y_A) 、 (x_B, y_B) 、 (x_C, y_C) 、 (x_D, y_D) ,使 y_A : y_B : y_C : y_D =1:4:9:16,若 x_A : x_B : x_C : x_D =_____,则说明钢球在 x 方向的分运动为

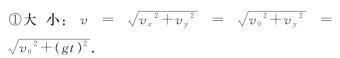
匀速直线运动.

丙

4 抛体运动的规律

第1课时 平抛运动的性质和规律


学习任务一 平抛运动的速度


[科学思维] 平抛运动的研究方法:

以速度 v_0 沿水平方向抛出一物体,以抛出点为原点,以初速度 v_0 的方向为 x 轴正方向,竖直向下的方向为 y 轴正方向,建立如图所示的平面直角坐标系.

(1)水平方向:物体不受力, o加速度 $a = _____,$ $v_x = v_0$.

(2)竖直方向:初速度是0,物体只受重力,加速度a=

②方向:
$$\tan \theta = \frac{v_y}{v_x} = \frac{gt}{v_0} (\theta \ \forall v \ \forall v_0 \ \text{的夹角}).$$

倒 1 (多选)如图所示,一物体从 A 点以水平方向速度 v_0 抛出,不计空气阻力. 经过 v_0 时间 t 运动到 B 点,重力加速度 为 g ,则

为g,则 () A. 物体在B点的速度大小是 v_0+gt

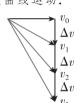
B. 物体在 B 点的速度大小是 $\sqrt{v_0^2+g^2t^2}$

- C. 物体从 A 点运动到 B 点过程中速度变化量的大小是 gt
- D. 物体从 A 点运动到 B 点过程中速度变化量的大小是 $\sqrt{v_0^2 + g^2 t^2} v_0$

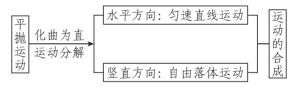
「反思感悟」

要式 1 $[2024 \cdot$ 福建厦门一中月考] 一个物体以初速度 v_0 水平抛出,落地速度为 v,重力加速度为 g,则物体运动时间为

A.
$$\frac{v-v_0}{g}$$


B.
$$\frac{v+v_0}{\rho}$$

C.
$$\frac{\sqrt{v^2 - {v_0}^2}}{g}$$


D.
$$\frac{\sqrt{v^2 + {v_0}^2}}{g}$$

【要点总结】

- 1. 平抛运动的性质:加速度为 g 的匀变速曲线运动.
- **2.** 速度变化特点:任意两个相等的时间间隔内速度的变化相同, $\Delta v = g \Delta t$,方向竖直向下,如图所示.

3. 平抛运动的研究方法:运动的分解与 合成.

学习任务二 平抛运动的规律与轨迹

[模型建构] 平抛运动的规律

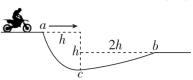
- (1)水平方向: $x = v_0 t$.
- (2)竖直方向: $y = \frac{1}{2}gt^2$.
- (3)轨迹方程: $y = \frac{g}{2v_0^2}x^2$,式中 $g \setminus v_0$ 都是与 $x \setminus y$ 无关的常量,所以其轨迹是一条抛物线.

倒 2 [2024・重庆渝北区期末] 从某一高度处水平抛出一物体,它落地时速度是 50 m/s,方向与水平方向成 53°角. 求: (不计空气阻力, g 取 10 m/s², cos 53°=0.6, sin 53°=0.8)

(1)抛出点的高度和水平射程;

- (2) 抛出后 3 s 末的速度;
- (3)抛出后3s内的位移.

变式 **2** [2023・东北育才中学月考] 如图所示,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平距离为 3h,其左边缘 a 点比右边缘 b 点高 0.5h. 若摩托车经过 a 点时的速度为 v_1 ,则它会落到坑内 c 点,c 点与 a 点的水平距离和高度差均为 h;若经过 a 点时的速度为 v_2 ,

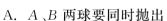

则该摩托车恰能越过坑到达 b 点. 速度比 v_2 : v_1 的值等于 ()

A. 3

B. 9

C. $9\sqrt{2}$

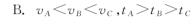
D. $3\sqrt{2}$

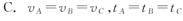


学习任务三 两个(或多个)物体做平抛运动的比较

[科学思维] 在两个物体(或多个物体)平抛运动问题中,要明确不同物体抛出的时刻和位置,以下四种情形较为常见:

- (1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度.
- (2)若两物体同时从不同高度抛出,则任一时刻两物体高度差始终与抛出点高度差相同.
- (3)若两物体从同一点先后抛出,则两物体高度差随时间均匀增大.
- (4)若两物体从不同点先后抛出且途中相遇,则抛出 点高的物体先抛出.


倒 3 如图所示,A 球在 B 球的左上方,两球相向水平抛出.要使两球在与两球抛出点水平距 $A \bullet$ 离相等的竖直线上相遇,则 ()



- B. B 球要先抛出
- C. *A* 球抛出时的速度要大于 *B* 球抛出时的速度
- D. A 球抛出时的速度要小于 B 球抛出时的速度

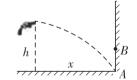
要式3 在同一点 O 抛出的三个物体 $A \setminus B \setminus C$ 做平抛运动的轨迹如图所示,则三个物体做平抛运动的初速度 $v_A \setminus v_B \setminus v_C$ 的关系和三个物体做平抛运动的时间 $t_A \setminus t_B \setminus t_C$ 的关系分别是

D. $v_A > v_B > v_C$, $t_A < t_B < t_C$

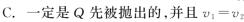
【要点总结】

影响做平抛运动的物体的飞行时间、水平射程及落地速度的因素:

- (1)飞行时间:由 $h=\frac{1}{2}gt^2$,得到运动时间 $t=\sqrt{\frac{2h}{g}}$,即平抛物体在空中的飞行时间仅取决于下落的高度h,与初速度 v_0 无关.
- (2)水平射程: $x=v_0t=v_0\sqrt{\frac{2h}{g}}$,即水平位移与初速度 v_0 和下落的高度 h 有关.
- (3) 落地速度: $v = \sqrt{v_0^2 + v_y^2} = \sqrt{v_0^2 + 2gh}$, v 由 v_0 和 h 共同决定.


/ 随堂巩固 /

- **1**. (对平抛运动的理解)关于平抛运动,下列说法中不正确的是
- A. 平抛运动是一种在恒力作用下的曲线运动
- B. 平抛运动的速度方向与加速度方向的夹角保持 不变
- C. 平抛运动的速度大小是时刻变化的
- D. 平抛运动的速度方向与加速度方向的夹角一定 越来越小
- 2. (平抛运动规律的应用)一把玩具枪水平射出的子弹正好能打在竖直墙角的 A 点,如图所示,枪口离水平地面的高度为 h,离竖直墙壁的水平距离为 x.

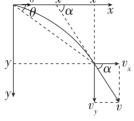

若让以相同速度射出的子弹打在离地高度为 $\frac{h}{2}$ 的 B

点,需让枪口和墙壁间距离变为 ()

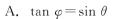
- A. $\frac{1}{2}x$ B. $\frac{\sqrt{2}}{2}x$
- C. $\frac{1}{4}x$ D. $\frac{\sqrt{2}}{4}x$

- **3.** (两个物体做平抛运动的比较)如图所示,从同一条竖直线上的两个不同点分别向右平抛小球 $P \setminus Q$,平抛 $P \setminus Q$ 的初速度分别为 $v_1 \setminus v_2$,结果它们同时落到水平面上的 M 点处(不考虑空气阻力).下列说法中正确的是
- A. 一定是 P 先被抛出的,并且
- B. 一定是 P 先被抛出的,并且 $v_1 < v_2$

D. 一定是 Q 先被抛出的,并且 $v_1 > v_2$

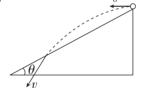

第2课时 平抛运动的两个重要推论 一般的抛体运动

学习任务一 平抛运动的两个重要推论


[科学论证]

(1)如图所示,设质点做平抛运动的速度方向与水平

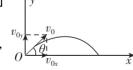
方向的夹角(速度偏向角)为 α ,位移方向与水平方向的夹角(位移偏向角)为 θ ,试证明 tan $\alpha = 2 \tan \theta$.


- (2)如上图所示,试证明平抛运动的速度反向延长线过水平位移的中点,即 $x' = \frac{x}{2}$.
- **倒 1** 如图所示,一物体自倾角为 θ 的固定斜面顶端沿水平方向抛出后落在斜面上. 物体与斜面接触时速度与水平方向的夹角 φ 满足 () v_0 。

B.
$$\tan \varphi = \cos \theta$$

C.
$$\tan \varphi = \tan \theta$$

D.
$$\tan \varphi = 2 \tan \theta$$



学习任务二 一般的抛体运动

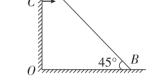
「模型建构〕

- (1)斜抛运动:以一定的初速度将物体沿与水平方向 成一定角度的方向抛出,物体仅在重力作用下所做 的曲线运动.
- (2) 斜抛运动的性质: 斜抛运动是加速度恒为重力加速度g的匀变速曲线运动, 轨迹是抛物线.
- (3)斜抛运动的基本规律(以斜向

上抛为例说明,如图所示)

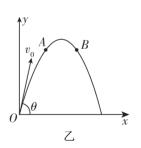
- ① 水 平 方 向: $v_{0x} = v_0 \cos \theta$, $F_{\hat{\ominus}x} = 0$.
- ②竖直方向: $v_{0y} = v_0 \sin \theta$, $F_{\phi y} = mg$.
- (4)斜抛运动可以看作是水平方向的匀速直线运动和竖直方向的竖直上抛(或下抛)运动的合运动.
- **倒 3** [2023·山西大学附中月考] 如图甲所示,喷出的水做斜抛运动,图乙为斜抛水柱的轨迹(不计空气阻力).对于轨迹上的两点 *A* 、*B*,下列说法正确的是
- A. A 点的速度方向沿切线向上,合力方向沿切线向下
- B. A 点的速度方向沿切线向上,合力方向竖直向下

- [反思感悟]
- **倒 2** (多选)如图所示,蜘蛛在地面与竖直墙壁间结网,蛛丝 AB 与水平地面之间的夹角为 45° , A 到地面的距离为 1 m,已知重力加速度 g 取 10 m/s 2 ,空气阻力不计,若蜘蛛从竖直墙上距地面 0.8 m 的 C


点以水平速度 v_0 跳出,要到达 蛛丝,水平速度 v_0 可以为()

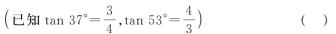
B. 2 m/s

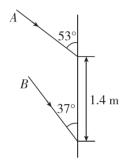
C. 3.5 m/s


D. 1.5 m/s

【要点总结】

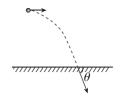
- **1.** 平抛运动在任意时刻瞬时速度方向与水平方向夹角 α 的正切值,是位移方向与水平方向夹角 θ 正切值的 2 倍,即 $\tan \alpha = 2\tan \theta$.
- 2. 平抛运动在任意时刻的瞬时速度反向延长线过水平位移的中点.
- C. B 点的速度方向沿切线向下,合力方向沿切线向下
- D. B 点的速度方向沿切线向下,合力方向竖直向上




要式 $[2023 \cdot 5]$ 表 $[2023 \cdot 5]$ 是 $[2023 \cdot 5]$ 是

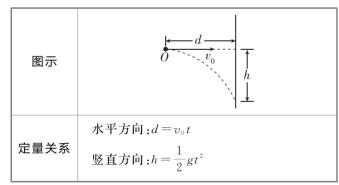
- A. 小球上升的最大高度为 0.6 m
- B. 小球在最高点的速度大小为 3 m/s
- C. 小球从 A 运动到 B 的时间为 0.3 s
- D. A、B 间的水平距离为 1.6 m

▮随堂巩固 ▮


1. (平抛运动的两个重要推论)[2023·山西实验中学月考]在电视剧里,我们经常看到这样的画面:屋外刺客向屋里投来两支飞镖,落在墙上,如图所示. 现设飞镖是从同一位置做平抛运动射出来的,飞镖 A 与竖直墙壁成 53°角,飞镖 B 与竖直墙壁成 37°角,两落点相距为 1.4 m,则刺客与墙壁的距离为

- A. 4.8 m
- B. 2.4 m
- C. 5.2 m
- D. 6.3 m

2. (平抛运动的两个重要推论)[2024 · 上海黄浦区期末]如图所示,从某高度水平抛出一小球,经过时间 t 到达地面时,速度与水平方向的夹角为 θ ,不计空气阻力,重力加速度为 g,下列说法正确的是()

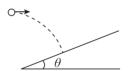

- A. 小球水平抛出时的初速度大小为 $gt \tan \theta$
- B. 小球在 t 时间内的位移方向与水平方向的夹角 为 $\frac{\theta}{2}$
- C. 仅小球初速度增大,则平抛运动的时间不变
- D. 若小球初速度增大,则 θ 角增大
- 3. (一般的抛体运动)(多选)[2024·长沙一中期末] 如图所示,一名运动员参加跳远比赛,腾空过程中离地面的最大高度为L,成绩为4L.运动员落入沙坑瞬间速度为v,方向与水平面的夹角为 α .运动员可视为质点,不计空气阻力,重力加速度为g,则
- A. $\tan \alpha = \frac{1}{2}$

- B. $\tan \alpha = 1$
- C. $v = 2\sqrt{gL}$
- D. $v = \sqrt{2gL}$

专题课: 平抛运动与各种面结合问题

学习任务一 与竖直面有关的平抛运动

倒 1 [2023·河北唐山一中月考] 乒乓球发球机是很多球馆和球友家庭的必备娱乐和训练工具. 如图所示,某次训练时将发球机置于地面上方某一合适位置,然后向竖直墙面水平发射乒乓球. 现有两个乒乓球 a 和 b 以不同速度射出,碰到墙面时下落的高度之比为9:16,不计阻力,则乒乓球 a 和 b ()


- A. 碰墙前运动时间之比为 9:16
- B. 初速度之比为 3:4
- C. 碰墙前速度变化量之比为 3:4
- D. 碰墙时速度与墙之间的夹角的正切值之比为4:3

[反思感悟]

学习任务二 与斜面有关的平抛运动

	情景示例	解题策略
	从斜面外平抛,垂直落在	
已知速	斜面上,如图所示,即已知 速度的方向垂直于斜面	分解速度
度方向		$\tan \theta = \frac{v_0}{v_y} = \frac{v_0}{gt}$
		y St
已知位	从斜面上平抛又落到斜面 上,如图所示,已知位移的	分解位移
	方向沿斜面向下	
	uhandananananan	$\frac{\frac{1}{2}gt^2}{v_0t} = \frac{gt}{2v_0}$
移方向	在斜面外平抛,落在斜面上位移最小,如图所示,已	分解位移
	知位移方向垂直于斜面	
	θ	$\frac{v_0 t}{\frac{1}{2}gt^2} = \frac{2v_0}{gt}$

倒2 一水平抛出的小球落到一倾角为 θ 的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示,则下列说法正确的是

- A. 水平速度与竖直速度之比为 $\tan \theta$
- B. 水平速度与竖直速度之比为 $\frac{1}{\tan \theta}$

- C. 水平位移与竖直位移之比为 $\frac{2}{\tan \theta}$
- D. 水平位移与竖直位移之比为 $\frac{1}{2\tan\theta}$

「反思感悟」

倒3 [2023 · 湖南雅礼中学月考] 如图所示,从倾角为 θ 的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上. 当抛出的速度为 v_1 时,小球到达斜面时速度方向与斜面的夹角为 α_1 ;当抛出速度为 v_2 时,小球到达斜面时速度方向与斜面的夹角为 α_2 ,则

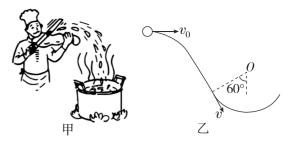
- A. 无论 v_1, v_2 关系如何,均有 $\alpha_1 = \alpha_2$
- B. 当 $v_1 > v_2$ 时, $\alpha_1 > \alpha_2$
- C. 当 $v_1 > v_2$ 时, $\alpha_1 < \alpha_2$
- D. α₁ 、α₂ 的关系与斜面倾角 θ有关

[反思感悟]

【要点总结】

求解平抛运动与斜面相结合问题的方法

- (1)物体以不同初速度从斜面上平抛又落到斜面上时,位移方向、速度方向以及速度方向与斜面的夹角均相同.
- (2)对于垂直打在斜面上的平抛运动,画出速度分解图;对于重新落在斜面上的平抛运动,画出位移分解图.
- (3)确定合速度(或合位移)与水平方向的夹角,利用夹角确定各分速度(或分位移)之间的关系.

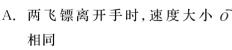

学习任务三 与圆弧面有关的平抛运动

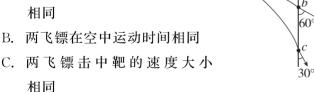
	情景示例	解题策略
已知速度方向	从圆弧形轨道外平抛,恰好无碰撞地进入圆弧形轨道,如图所示,即已知速度方向沿该点圆弧的切线方向	分解速度 $ an heta = rac{v_y}{v_0} = rac{gt}{v_0}$

情景示例 解题策略 从圆心处抛出落到半径 为 R 的圆弧上, 如图所 示, 位移大小等于半径 R $y=\frac{1}{2}gt^2$ $x^2+y^2=R^2$

	情景示例	解题策略
	从与圆心等高圆弧上抛	
	出落到半径为R的圆弧	
	上,如图所示,水平位移	$x = R + R \cos \theta$
 利用位	x 与 R 的差的平方与竖	$x = v_0 t$
移关系	直位移的平方之和等于	$y = R \sin \theta = \frac{1}{2}gt^2$
10000	半径的平方	2
	$v_0 OR$	$((x-R)^2+y^2=R^2$

倒 4 [2024 • 广东云浮期末] 我国的面食文化博大精深,种类繁多,其中"刀削面"堪称一绝. 传统的操作手法是一手托面,一手拿刀,直接将面削到开水锅里,如图甲所示. 某次削面的过程可简化为图乙,面片(可视为质点)以初速度 $v_0 = \sqrt{3}$ m/s 水平飞出,正好沿锅边缘的切线方向掉入锅中,锅的截面可视为圆心在 O 点的圆弧,锅边缘与圆心的连线与竖直方向的夹角为 60° ,不计空气阻力,重力加速度大小 g 取 10 m/s²,则

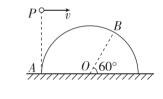

- A. 面片在空中运动的时间为 0.3 s
- B. 面片在空中运动的水平位移为 0.45 m
- C. 面片运动到锅边缘时的速度大小为 4 m/s
- D. 面片从飞出到落到锅边缘的位移方向与水平方向的夹角为 30°


旬 5 [2023 • 山东临沂期中] 如图所示,AB 为半圆 环 ACB 的水平直径,C 为环上的最低点,环半径为 R.一个小球从 A 点沿 AB 方向以速度 v_0 水平抛出,不计空气阻力,则下列判断正确的是

- B. 即使 v_0 取值不同,小球落到半 C 圆环上时的速度方向和水平方向的夹角也相同
- C. v₀ 取值适当时可以使小球垂直撞击半圆环
- D. 无论 v₀ 取何值,小球都不可能垂直撞击半圆环

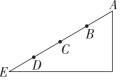
| 随堂巩固 |

1. (与竖直面有关的平抛运动)(多选)[2024·福建 漳州期末] 如图,某人从 O 点对准正前方竖直靶上 的 a 点,分别将两支飞镖水平掷出,飞镖打在靶上 b、 c 两点,且与竖直方向的夹角分别为 60°与 30°,忽略 空气阻力,则

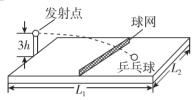


- D. ac 间距为 ab 间距的 3 倍
- **2.** (与圆弧面有关的平抛运动)[2023•河南洛阳期中]如图所示,竖直放置、半径为R的半圆轨道直径边在水平地面上,O为圆心,A、B在轨道上,A是轨道最左端,OB与水平面夹角为 60° 。在A点正上方P处将可视为质点的小球水平抛出,小球过B点且与半圆轨道相切,重力加速度为g,小球抛出时的初速度为

3. (与斜面有关的平抛运动)[2023·杭州二中月考] 如图所示,固定斜面的倾角为 α ,高为h,一小球从斜面顶端水平抛出,落至斜面底端,重力加速度为g,不计空气阻力,则小球从抛出到离斜面距离最大所用的时间为



- **4.** (与斜面有关的平抛运动)(多选)如图所示,A、E分别是斜面的顶端和底端,B、C、D 是斜面上的三个点,且 AB=BC=CD=DE. 从 A 点以不同的水平速度向左抛出两个小球(不计空气阻力),球 1 落在 B 点,球 2 落在 E 点. 两球从抛出到落在斜面上的运动过程中,下列说法正确的是
- A. 球 1 和球 2 运动的时间之比 为 1:2
- B. 球 1 和球 2 抛出时初速度大 小之比为 1:4



- C. 球1和球2在落点处的速度方向相同
- D. 球1和球2在落点处的速度大小之比为1:4

专题课: 平抛运动中的临界极值问题 类平抛运动

学习任务一 平抛运动中的临界极值问题

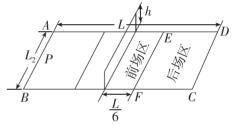
[科学思维] 一带有乒乓球发射机的乒乓球台如图 所示. 水平台面的长和宽分别为 L_1 和 L_2 ,中间球网 高度为 h. 发射机安装于台面左侧边缘的中点,能以 不同速率向右侧不同方向水平发射乒乓球,发射点 距台面高度为 3h. 不计空气的阻力作用,重力加速 度大小为 g.

- (1)要使乒乓球落到球网右侧台面上,且速度 v 最小,落点在
- (2)要使乒乓球落到球网右侧台面上,且速度 v 最大,落点在

倒 1 如图所示,窗子上、下沿间的高度差 H=1.6 m,墙的厚度 d=0.4 m.某人在到墙壁距离为L=1.4 m、距窗子上沿高度为 h=0.2 m 处的 P 点将可视为质点的小物体以速度 v 水平抛出,小物体直接穿过

窗口并落在水平地面上,g取 10 m/s^2 ,则v的取值范围是 ()

A. v > 2.3 m/s


B. 2.3 m/s < v < 7 m/s

C. 3 m/s < v < 7 m/s

D. 2.3 m/s< v < 3 m/s

[反思感悟]

要式1 (多选)[2023•浙江学军中学月考] 如图所示是排球场地的示意图. 排球场 ABCD 为矩形,长边 AD=L=18 m,前场区的长度为 $\frac{L}{6}$,宽 $L_2=12$ m,网高为 h=1. 95 m. 在某次排球比赛中,若运动员在底线 AB 中点 P 的正上方跳起水平发球,当排球进入对方半场的后场区域时才算有效,忽略空气阻力,g 取 10 m/s 2 ,排球可看作质点,下列说法正确的是

- A. 若运动员的击球点高度为 3.20 m,有效击球的最小速度为 18 m/s
- B. 若运动员的击球点高度为 3.20 m,有效击球的最大速度为 22.5 m/s
- C. 若沿垂直 AB 方向水平击球,且击球点高度小于 2.6 m,则发球必定失败
- D. 若沿 PD 方向水平击球,且击球点高度小于 2.6 m,只要速度合适,发球可以成功

【要点总结】

处理平抛运动中的临界问题要抓住两点

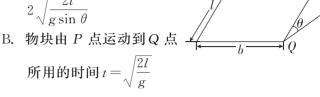
- (1)找出临界状态对应的临界条件:
- (2)用分解速度或者分解位移的思想分析平抛运动的临界问题。

学习任务二 类平抛运动

「科学思维」

1. 类平抛运动的分析

所谓类平抛运动,就是受力特点和运动特点类似于平抛运动,即受到一个恒定的外力且外力与初速度方向垂直,物体做匀变速曲线运动.


- (1)受力特点:物体所受合力为恒力,且与初速度的方向垂直.
- (2)运动特点:沿初速度 v_0 方向做匀速直线运动,沿合力方向做初速度为零的匀加速直线运动.

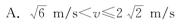
2. 求解方法

- (1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动.
- (2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度 a 分解为 a_x , a_y ,初速度 v_0 分解为 v_x , v_y ,然后分别在 x,y 方向上列方程求解.
- **倒 2** (多选)如图,一光滑宽阔的斜面倾角为 θ ,高为h,现有一小球在A 处以水平速度 v_0 射出,最后从B 处离开斜面,重力加速度为g,下列说法正确的是
- A. 小球的运动轨迹为抛 物线
- 物线
 B. 小球的加速度为 g sin θ
 C. 小球从 A 处到达 B 处所
 - 用的时间为 $\frac{1}{\sin \theta} \sqrt{\frac{2h}{g}}$
- D. 小球到达 B 处时水平方向位移大小为 $v_0\sqrt{\frac{2h}{g}}$ [反思感悟]

变式 2 如图所示的光滑斜面长为 l ,宽为 b ,倾角为 θ ,一物块(可看成质点)从斜面左上方顶点 P 以初速 度 v_0 水平射入,恰好从底端 Q 点离开斜面,重力加速度为 g ,则

A. 物块由 P 点运动到 Q 点 所 用 的 时 间 $t = 2\sqrt{\frac{2l}{a \sin \theta}}$

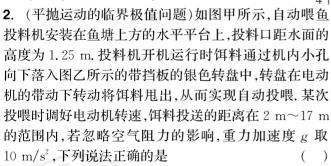
- C. 初速度 $v_0 = b \sqrt{\frac{g \sin \theta}{2l}}$
- D. 初速度 $v_0 = b \sqrt{\frac{g}{2l}}$

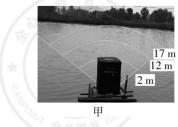

【要点总结】

类平抛运动与平抛运动的区别

做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力, $a=\frac{F_{\oplus}}{2}$.

/ 随堂巩固 /


1. (平抛运动的临界极值问题)如图所示,一阶梯的每级台阶的高与宽都为 0.4 m,小球以水平速度 v 飞出,欲打在第四级台阶上,g 取 10 m/s^2 ,则 v 的取值范围是



B.
$$2\sqrt{2} \text{ m/s} < v \le 3.5 \text{ m/s}$$

C.
$$\sqrt{2}$$
 m/s $< v \le \sqrt{6}$ m/s

D.
$$\sqrt{6} \text{ m/s} < v \le 3.5 \text{ m/s}$$

- A. 饵料被水平甩出时的最大径向速度为 17 m/s
- B. 饵料被水平甩出时的最小径向速度为 1 m/s
- C. 增大投料机的安装高度同时减小电动机转速,饵料的最大投放距离一定增大
- D. 降低投料机的安装高度同时增大电动机转速,饵料的最大投放距离可以不变
- **3.** (类平抛运动)[2024 · 湖南岳阳期末] 如图所示,一物体在某液体中运动时只受到重力 G 和恒定的浮力F 的作用,且 F 为重力的 $\frac{1}{2}$. 如果物体从 M 点以水平初速度 v_0 开始运动,最后落在 N 点,MN 间的竖直高度为 h ,重力加速度为 g ,则下列说法正确的是
- A. 从M 运动到N 的时间 为 $\sqrt{\frac{2h}{\sigma}}$
- C. 从 M 运动到 N 的轨迹为抛物线
- D. 减小水平初速度 v_0 ,运动时间将变长